Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Agroecosystems, which include row crops, pasture, and grass and shrub grazing lands, are sensitive to changes in management, weather, and genetics. To better understand how these systems are responding to changes, we need to improve monitoring and modeling carbon and water dynamics. Vegetation Indices (VIs) are commonly used to estimate gross primary productivity (GPP) and evapotranspiration (ET), but these empirical relationships are often location and crop specific. There is a need to evaluate if VIs can be effective and, more general, predictors of ecosystem processes through time and across different agroecosystems. Near‐surface photographic (red‐green‐blue) images from PhenoCam can be used to calculate the VI green chromatic coordinate (GCC) and offer a pathway to improve understanding of field‐scale relationships between VIs and GPP and ET. We synthesized observations spanning 76 site‐years across 15 agroecosystem sites with PhenoCam GCCand GPP or ET estimates from eddy covariance (EC) to quantify interannual variability (IAV) in the relationship between GPP and ET and GCCacross. We uncovered a high degree of variability in the strength and slopes of the GCC∼ GPP and ET relationships (R2 = 0.1 ‐ 0.9) within and across production systems. Overall, GCCis a better predictor of GPP than ET (R2 = 0.64 and 0.54, respectively), performing best in croplands (R2 = 0.91). Shrub‐dominated systems exhibit the lowest predictive power of GCCfor GPP and ET but have less IAV in slope. We propose that PhenoCam estimates of GCCcould provide an alternative approach for predictions of ecosystem processes.more » « lessFree, publicly-accessible full text available September 1, 2026
-
na (Ed.)Environmental observation networks, such as AmeriFlux, are foundational for monitoring ecosystem response to climate change, management practices, and natural disturbances; however, their effectiveness depends on their representativeness for the regions or continents. We proposed an empirical, time series approach to quantify the similarity of ecosystem fluxes across AmeriFlux sites. We extracted the diel and seasonal characteristics (i.e., amplitudes, phases) from carbon dioxide, water vapor, energy, and momentum fluxes, which reflect the effects of climate, plant phenology, and ecophysiology on the observations, and explored the potential aggregations of AmeriFlux sites through hierarchical clustering. While net radiation and temperature showed latitudinal clustering as expected, flux variables revealed a more uneven clustering with many small (number of sites < 5), unique groups and a few large (> 100) to intermediate (15–70) groups, highlighting the significant ecological regulations of ecosystem fluxes. Many identified unique groups were from under-sampled ecoregions and biome types of the International Geosphere-Biosphere Programme (IGBP), with distinct flux dynamics compared to the rest of the network. At the finer spatial scale, local topography, disturbance, management, edaphic, and hydrological regimes further enlarge the difference in flux dynamics within the groups. Nonetheless, our clustering approach is a data-driven method to interpret the AmeriFlux network, informing future cross-site syntheses, upscaling, and model-data benchmarking research. Finally, we highlighted the unique and underrepresented sites in the AmeriFlux network, which were found mainly in Hawaii and Latin America, mountains, and at under- sampled IGBP types (e.g., urban, open water), motivating the incorporation of new/unregistered sites from these groups.more » « lessFree, publicly-accessible full text available September 1, 2026
An official website of the United States government
